Физические основы работы квантовых приборов оптического диапазона

Курс лекций по строительной механике
Задачи по строительной механике
Лабораторные работы по электронике
Лекции по сопромату, теория,
практика, задачи
Моменты инерции сложных фигур
Деформации и перемещения при
кручении валов
Определение опорных реакций
Понятие об устойчивости
Внутренние силы. Метод сечения
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
Слоновая кость
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
Фламандский метод живописи масляными
красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой гармонии
Техника живописи различных мастеров
Джорджоне и Тициан
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Актиниды
Актиний
Применение тория
Химически уран
Изотоп уран-233
Нептуний
Плутоний
Лекции и задачи по физике
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности изготовления
диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Автокад
Настройка рабочей среды
Методы редактирования
Слои в Автокаде
 

Физические основы работы квантовых приборов оптического диапазона В отличие от электронных приборов, в которых для усиления или генерации электромагнитного поля используется энергия свободных носителей зарядов, в квантовых приборах используется, как правило, внутренняя энергия микрочастиц (энергия атомов, ионов, молекул). При этом сами микрочастицы могут находиться в движении. Исключением является полупроводниковый лазер, в котором используются потоки свободных носителей заряда, однако излучение света связано с квантовыми эффектами (излучательная рекомбинация).Электроны, входящие в состав микрочастиц, называются связанными.

Квантовые переходы В твердых телах взаимодействие частиц становится настолько сильным, что образуются зоны с очень близко расположенными уровнями, между этими зонами имеются зоны запрещенных значений энергии (запрещенные зоны). Уровень, соответствующий наименьшей допустимой энергии микрочастицы, называется основным, а остальные – возбужденными.

Возможность усиления электромагнитного поля в квантовых системах То обстоятельство, что вынужденное излучение возбужденных микрочастиц при переходах с верхнего энергетического уровня на нижний когерентно (совпадает по частоте, фазе, поляризации и направлению распространения) с вынуждающим, наталкивает на мысль о возможности использования вынужденных переходов для усиления электромагнитного поля. Чтобы оценить возможность такого усиления, рассмотрим обмен энергии между полем и веществом.

Электромагнитное поле и параметры сред. Современная физика признает 2 формы существования материи: вещество и поле. Нам известны многие разновидности полей: электромагнитные, силовые, внутриядерных и других взаимодействий. Во многом свойства их сходны. Вещество состоит из дискретных элементов (молекул, атомов ...). Движущееся электромагнитное поле тоже можно представить в виде потока дискретных частиц — фотонов. Электромагнитное поле характеризуется энергией, массой, импульсом. Масса и импульс характерны только движущемуся электромагнитному полю (электромагнитное поле не имеет массы покоя). Энергия электромагнитного поля может преобразовываться в другие виды энергии. Электромагнитное поле подвержено действию гравитационных сил. С другой стороны поток материальных частиц способен реализовать явление дифракции, интерференции, которые присущи электромагнитным волнам

Векторы магнитного поля. Сила взаимодействия электромагнитного поля на точечный электрический заряд зависит не только от величины и положения заряда, но также от скорости и направления его движения. Как известно, сила, действующая на положительный точечный электрический заряд движущийся в магнитном поле определяется силой Лоренца:  

Классификация сред. Свойства сред характеризуются электродинамическими параметрами, к которым относятся eа, mа, s (s — объемная удельная проводимость [См/м]). В зависимости от свойств электродинамические параметры среды делятся на: линейные и нелинейные. Среды, в которых электродинамические параметры не зависят от электрических и магнитных полей называются линейными. Среды, в которых наблюдается зависимость (eа, mа, s) = f (E,H) называются нелинейными. В природе все среды следует рассматривать как нелинейные. Тем не менее, большинство сред при малых полях со слабо выраженной зависимостью от величины поля для простоты полагают линейными. В свою очередь линейные среды делятся на: однородные, неоднородные, изотропные и анизотропные.

Основные уравнения электродинамики. В электродинамике часто пользуются понятием точечного заряда. Под ним будем понимать заряженные тела, размеры которых значительно меньше расстояния между телами. В тех случаях, когда заряженные тела нельзя считать точечными для описания распределения зарядов вводят понятие объемной плотности электрического заряда в точке

Закон сохранения заряда. Полученное уравнение непрерывности тесно связано с законом сохранения заряда и по существу является его дифференциальной. Закон сохранения заряда: Всякому изменению электрического заряда (q) внутри объема V, ограниченному поверхностью S, соответствует электрический ток, втекающий или вытекающий из этого объема

Первое уравнение Максвелла. В среде с постоянным током, который характеризуется вектором объемной плотности , выделим некоторый замкнутый контур V и поверхность S, которая опирается на этот контур. Введем положительную единичную нормаль к поверхности S.

Второе уравнение Максвелла. В результате обобщения многочисленных экспериментальных исследований Фарадей получил закон электромагнитной индукции: Переменное магнитное поле, пересекающее замкнутый  проводящий контур, наводит в этом контуре э.д.с., величина которой пропорциональна скорости изменения потока.

 Уточнение понятия о проводниках и диэлектриках. Среды могут существенно отличаться величиной объемной проводимости, поэтому при одной и той же напряженности электрического поля в них могут возбуждаться различные токи. Для удобства классификации сред на проводники и диэлектрики вводят понятия идеального проводника и идеального диэлектрика. Идеальные проводники – это среды, удельная проводимость которых бесконечна. Идеальные диэлектрики – среды, удельная проводимость которых равна нулю

  Граничные условия. Неприменимость уравнений Максвелла в дифференциальной форме на границе раздела диэлектрических сред. Уравнения Максвелла в дифференциальной форме справедливы для описания сред электродинамические параметры, которых либо являются непрерывными функциями координат поля в линейных средах, электродинамические параметры (eа,mа,s) которых не зависят от координат, либо являются непрерывными функциями координат. На практике, чаще всего возникают задачи, в которых присутствуют электродинамические среды, отличающиеся электродинамическими параметрами. На границе раздела сред, где соответствующие параметры меняются скачком, операция дифференцирования, а стало быть, и уравнения Максвелла в дифференциальной форме, незаконна. В этом случае для описания электромагнитного поля при переходе границы раздела сред, используют уравнения Максвелла в интегральной форме.

Условия для касательных составляющих вектора E и D На границе раздела сред, отличающихся eа, выделим точку. Проведем через нее нормаль к поверхности S. Через эту нормаль проведем плоскость р.

На линии пересечения плоскостей выделим элементарный отрезок Dl, так, чтобы его можно было считать прямолинейным, и касательная, составляющая Е в I и II средах у границы раздела, была распределена равномерно. Отрезок Dl включает точку, в которой построили единичную нормаль. В этой точке проведем единичный вектор касательный к Dl и единичный вектор перпендикулярный к Dl. В плоскости р построим контур высотой Dh так, чтобы участки контура CD и АВ находились в разных средах. Положительное направление обхода контура ABCD связано с направлением единичной нормали правилом правого винта.

Условия для касательных составляющих В и Н. Поверхностный ток. Условия для касательных составляющих магнитных векторов выводятся также как и для электрических. Через нормаль проводим плоскость р. На линии пересечения выделяем элемент длины Dl, малый настолько, чтобы в пределах этого участка касательные составляющие  в 1 и 2 средах были распределены равномерно.

Введение. Важнейшие оптоэлектронные и квантовые приборы и устройства, их роль в инфокоммуникационных технологиях и системах связи. Задачи курса.

2. Физические основы квантовой электроники. Постулаты квантовой механики. Способы описания квантово-механических систем. Матрица плотности.

3. Зонная теория твердого тела. Энергетические уровни атомов и молекул. Расщепление уровней. Эффекты Зеемана и Штарка. Энергетические зоны в кристаллах. Диэлектрические и магнитные свойства вещества. Явления в плазме.

4. Физические основы взаимодействия квантовых систем с электромагнитным полем. Поглощение и усиление электромагнитного излучения веществом. Энергетический спектр состояний. Однофотонные и многофотонные квантовые переходы. Коэффициенты Эйнштейна и их физический смысл. Населенность энергетических уровней. Схемы создания инверсии населенностей.

5. Элементы и узлы лазерных устройств. Оптические резонаторы, их основные характеристики и параметры, задачи анализа и синтеза. Устройства связи мод. Модуляторы и дефлекторы. Оптические интегральные схемы.

6. Квантовые усилители и генераторы радиочастотного диапазона. Мазеры. Парамагнитные усилители бегущей волны. Пучковые генераторы на аммиаке и водороде.

7. Оптические квантовые генераторы (ОКГ) на газовой среде. Газоразрядные лазеры. Гелий-неоновый и аргоновый лазеры. Газо- и плазмодинамические лазеры. Лазер на оксиде углерода. Химические и электроионизационные лазеры.

8. Оптические квантовые генераторы на твердом теле. Устройство и конструкция, основные характеристики и параметры. Промышленные твердотельные лазеры : на рубине, на стеклах и гранатах, активированные неодимом.

9. Полупроводниковые оптические квантовые генераторы. Инжекционные лазеры. Устройство и конструкция, основные характеристики и параметры. Лазерные диоды и гетероструктуры. Лазерные электронно- лучевые трубки с продольной накачкой. Лазеры с оптической накачкой.

10. Жидкостные оптические квантовые генераторы. Лазеры на растворах органических и неорганических соединений. Устройство и конструкция, основные характеристики и параметры. Лазеры на красителях.

11. Лазерные усилители бегущей волны. Резонаторные усилители. Условия самовозбуждения и спектр излучения. Переходные процессы в лазерном генераторе. Генераторы с нестационарными параметрами. Лазерные умножители частоты. Параметрическое преобразование частоты. Лазеры на вынужденном комбинационном рассеянии и вынужденном рассеянии Мандельштама - Бриллюэна.

12. Основы применения оптоэлектронных и квантовых приборов в инфокоммуникационных технологиях и системах связи. Информационное применение лазеров. Голография.

13. Лазеры в измерительных системах

14. Лазеры в медицинской технике

Прямые линии и плоскости Кривые второго порядка
Сопромат, механика, информатика. Теория, практика, задачи Математика, физика