Микроволновый диапазон

Курс лекций по строительной механике
Задачи по строительной механике
Лабораторные работы по электронике
Лекции по сопромату, теория,
практика, задачи
Моменты инерции сложных фигур
Деформации и перемещения при
кручении валов
Определение опорных реакций
Понятие об устойчивости
Внутренние силы. Метод сечения
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
Слоновая кость
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
Фламандский метод живописи масляными
красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой гармонии
Техника живописи различных мастеров
Джорджоне и Тициан
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Актиниды
Актиний
Применение тория
Химически уран
Изотоп уран-233
Нептуний
Плутоний
Лекции и задачи по физике
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности изготовления
диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Автокад
Настройка рабочей среды
Методы редактирования
Слои в Автокаде
 

Особенности микроволнового диапазона и динамического принципа управления преобразованием энергии

Достоинства и недостатки использования микроволнового диапазона. Электромагнитные колебания микроволнового и оптического диапазонов обладают целым рядом специфических особенностей и свойств, отличающими их от смежных участков спектра. На сверхвысоких частотах длина волны соизмерима с линейными размерами физических тел. Геометрические размеры схемотехнических элементов аппаратуры, в том числе и антенн, также оказываются соизмеримыми с длиной волны и могут значительно превышать ее. Поэтому волны диапазона СВЧ обладают квазиоптическими свойствами, т. е. по характеру распространения приближаются к световым волнам. Наряду с этим принципы работы СВЧ устройств в значительной мере определяются явлениями дифракции и не могут непосредственно использовать законы геометрической оптики, а также законы обычных электрических цепей.

Особенности динамического принципа управления преобразованием Идея динамического управления процессом преобразования энергии предполагает возможность управления эффективностью энергообмена между электронным потоком, пронизывающем область локализации выходного электромагнитного поля и этим полем. При этом управление производится путем воздействия на электронный поток со стороны входного электромагнитного поля, локализованное в другом или том же самом межэлектродном промежутке.

Классификация приборов микроволнового диапазона В настоящее время разработано много приборов, отличающихся как принципом действия, так и областью применения. Электровакуумные приборы СВЧ диапазона могут быть по характеру энергообмена разделены на приборы типов О и М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле или не используется совсем, или применяется только для фокусировки электронного потока и принципиального значения для процесса энергообмена не имеет.

Электрофизические свойства однородных и неоднородных полупроводников

Свободные носители зарядов в полупроводниках Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости (10-6—10-8 Ом-1см-1) являются промежуточными между проводниками и диэлектриками. Их удельная проводимость сильно зависит от температуры и концентрации примесей, а во многих случаях — и от различных внешних воздействий (света, электрического поля и др.). По своему составу полупроводники можно разделить на простые, если они образованы атомами одного химического элемента (например, германия Ge, кремния Si, селена Se), и сложные, если они являются химическим соединением или сплавом двух или нескольких химических элементов (например, антимонид индия InSb, арсенид галлия GaAS и др.).

Равновесная концентрация СНЗ в примесных и беспримесных полупроводниках Равновесная концентрация зарядов в собственном полупроводнике Вероятность p нахождения свободного электрона в энергетическом состоянии W определяется статистической функцией Ферми— Дирака

Движение СНЗ в электрическом поле В собственном полупроводнике при Т=0К электроны и дырки отсутствуют и внешнее напряжение не вызывает в нем ток. При Т>0К в отсутствии электрического поля электроны и дырки движутся хаотически. Если же к полупроводнику приложить внешнее напряжение, то внутри него возникает упорядоченное движение электронов в направлении положительного градиента потенциала du/dx, а дырок — в обратном направлении. В полупроводнике под влиянием различных энергетических воздействий может возникнуть неравновесная концентрация зарядов. После прекращения воздействия избыточные носители постепенно рекомбинируют и концентрация вновь становится равновесной.

Электрическим переходом называется слой в полупроводнике между двумя областями с различными типами электропроводности (n-полупроводник, p-полупроводник, металл, диэлектрик) или разными величинами удельной электрической проводимости. Если переход создается между двумя областями полупроводника, одна из которых имеет электропроводность n-типа, а другая p-типа, то такой переход называется электронно-дырочным или p-n-переходом.

Электрические и геометрические параметры p-n перехода Высота потенциального барьера и контактная разность потенциалов

Статическое и дифференциальное сопротивления Дифференциальное сопротивление определяется выражением Rдиф = dU/dI и характеризует крутизну ВАХ в рассматриваемой точке. Для идеализированного перехода по формуле (3.16) можно получить аналитическое выражение

Способы нарушения равновесия Равновесие в переходе может быть нарушено либо путем изменения напряженности поля в переходе, либо путем изменения концентрации СНЗ. Концентрация СНЗ как в переходе, так и прилегающих к нему областях полупроводника, может быть изменена, например, путем облучения полупроводника светом подходящей длины волны или путем любого другого воздействия, изменяющего скорость генерации (рекомбинации) свободных носителей заряда в этих областях. Она может быть изменена также путем принудительного введения (инжекции) в переход или, наоборот, путем принудительного извлечения (экстракции) из перехода СНЗ.

Рассмотрим в чем заключается эффект накопления заряда. В случае подачи на диод коротких импульсов напряжения длительностью порядка единиц или долей микросекунды необходимо учитывать инерционность его включения и выключения, обусловленную переходными процессами. При протекании прямого тока через диод в его базе из-за инжекции накапливаются неосновные неравновесные носители заряда. Если изменить полярность приложенного к диоду напряжения с прямой на обратную, этот заряд рассасывается постепенно, и возникающий обратный ток вследствие высокой концентрации неосновных неравновесных носителей в базе окажется вначале значительно больше статического тока насыщения; величина его будет ограничиваться лишь внешней нагрузкой. Следовательно, при быстром переключении с прямого напряжения на обратное диод запирается не сразу. Это явление связано со спецификой работы p-n-перехода и обусловлено так называемым эффектом накопления заряда.

Технологические особенности изготовления диодов СВЧ диапазона Характерной особенностью p-n-переходов диодов и транзисторов СВЧ-диапазона является их малая емкость, что достигается уменьшением площади перехода. Конструкция приборов на основе р-n-переходов и технология их изготовления должны обеспечивать точное и воспроизводимое выполнение как поперечных размеров перехода, так и толщины слоев полупроводниковых материалов, а также требуемый уровень и профиль легирования.

Туннельный диод относится к группе полупроводниковых приборов, вольт-амперные характеристики которых имеют участок, соответствующий отрицательному дифференциальному сопротивлению прибора. Туннельный диод применяется как многофункциональный прибор (усиление, генерация, переключение и др.) для работы преимущественно в области СВЧ. Он может работать и на более низких частотах, однако его эффективность в этом случае значительно ниже, чем, например, транзистора.

Вольт-амперная характеристика туннельного диода Приведена вольт-амперная характеристика туннельного диода. Особенность этой характеристики заключается в следующем. В области обратных напряжений обратный ток растет очень быстро с повышением напряжения, т. е. туннельный диод обладает весьма малым обратным дифференциальным сопротивлением. В области прямых напряжений с увеличением напряжения прямой ток сначала растет до пикового значения I1 при напряжении U1 в несколько десятков милливольт, а затем начинает уменьшаться (участок АВ, в пределах которого туннельный диод обладает отрицательной проводимостью G. Ток спадает до минимального значения I2 при напряжении U2 порядка нескольких сотен миливольт, в дальнейшем прямой ток вновь начинает увеличиваться с ростом напряжения.

Для изготовления туннельных диодов применяются различные полупроводниковые материалы: германий, кремний, арсенид галлия, фосфат индия, арсенид индия, антимонид индия и антимонид галлия. Выбор материала в значительной степени определяется требуемыми параметрами прибора. Наиболее перспективным материалом является арсенид галлия, обладающий наилучшими параметрами. Для германиевых диодов в качестве доноров используют фосфор или мышьяк, а в качестве акцепторов — галлий или алюминий. Для арсенид-галлиевых - олово, свинец, серу, селен, теллур (доноры), цинк, кадмий (акцепторы). Для получения узкого p-n-перехода применяется метод вплавления или диффузии примесей.

Диод Шоттки Физические исследования контакта металл — полупроводник стимулировались прогрессом в области точечно-контактных полупроводниковых выпрямителей. В предвоенные годы немецкий ученый Шоттки получил основные математические соотношения, описывающие электрические характеристики этого контакта, вследствие чего подобную структуру стали называть барьером Шоттки. Однако многие замечательные свойства, предсказываемые теорией для барьера Шоттки, практически наблюдать не удалось из-за очень резкого отличия точечных диодов от идеализированной модели (значительные механические напряжения в приконтактной области, наличие промежуточных окисных слоев, мультиконтактность и т. п.). Этим, а также большими успехами приборов с p-n-переходами и объясняется тот ограниченный интерес в отношении исследований контакта металл — полупроводник и создания приборов на его основе.

p-i-n-диод состоит из трех чередующихся областей: с дырочной, собственной и электронной проводимостью. Между сильно легированными областями с дырочной и электронной электропроводностью находится i-область с концентрацией носителей, близкой к концентрации pi и ni в собственном полупроводнике (рис. 6.4. б). Концентрации носителей в р-области рр и пр , а в n-области nn и рп∙ При подаче прямого напряжения в i-область одновременно инжектируются дырки из р-области и электроны из n-области. Сопротивление i-области и всего диода становится малым, его значение определяется постоянным током, протекающим через диод.. При обратном напряжении дырки и электроны экстрагируются из i-области в p- и n-области соответственно. Уменьшение концентрации носителей в i-области приводит к увеличению сопротивления i-об-ласти и всего диода. Такая зависимость сопротивления p-i-n-диода от напряжения объясняет эффективность его применения в качестве мощного выпрямительного диода, у которого должны быть малое прямое и большое обратное, сопротивления. Разработка p-i-n-диодов с малой емкостью позволила использовать их в СВЧ диапазоне.

Лавинно-пролетный диод (ЛПД)— это полупроводниковый СВЧ-диод, в котором для получения носителей заряда используется лавинное умножение (ударная ионизация) в области электрического перехода и взаимодействие этих носителей с переменным полем в переходе в течение времени пролета. Лавинно-пролетные диоды относятся к классу двух-полюсников, обладающих отрицательным сопротивлением на зажимах, что позволяет испо-льзовать ЛПД для создания генераторов и усилителей. Отрицательное сопротивление ЛПД проявляется только на достаточно высоких частотах и не проявляется в статическом режи-ме. Причиной этого является наличие фазового сдвига между током и напряжением на ЛПД.

Пролетный режим работы ЛПД (IМРАТТ -Avalanche Transit Time — ударная ионизация и пролетное время) работы диода основан на использовании лавинного пробоя и эффекта времени пролета носителей в обедненной области различных полупроводниковых структур. Распределение поля в этой области, определяющее физические процессы в диоде, зависит от типа структуры и закона распределения концентрации примесей в областях структуры. Ниже будет рассмотрена структура типа n+—р—i—p+ (диод Рида) (рис. 7.2, a), в которой области лавинного умножения и дрейфа носителей пространственно разделены.

Параметры их характеристики, особенности устройства и применения ЛПД Основными параметрами ЛПД являются: а) выходная мощность Pвых—мощность генератора на ЛПД в заданном диапазоне частот и напряжения питания. Это важнейший параметр ЛПД. Максимальная полезная мощность генератора при заданном сопротивлении нагрузки зависит от добротности диода и от амплитуды переменного тока и напряжения. Максимальное значение выходной мощности различных типов ЛПД колеблется в пределах 10—100 мВт на частоте 7-50 ГГц;

Для ycилeния и гeнepaции кoлeбaний CBЧ-диaпaзoнa мoжeт быть иcпoльзoвaнa aнoмaльнaя зaвиcимocть cкopocти элeктpoнoв oт нaпряжeннocти элeктpичecкoгo пoля в нeкoтopыx пoлyпpoвoдникoвыx coeдинeнияx, пpeжде вceгo в apcенидe гaллия. Пpи этoм ocнoвнyю poль игpaют пpoцeccы, пpoиcxoдящиe в oбъeмe пoлyпpoвoдникa, a нe в p-n-пepexoдe. В 1961 -1962гг. Ридли, Уоткинс и Хилсум теоретически показали, что однородные образцы из некоторых полупроводниковых материалов могут иметь отрицательную дифференциальную проводимость. В 1963 г. Дж.Ганн экспериментально обнаружил токовую неустойчивость (высокочастотные периодические импульсы тока) в однородных образцах из GaAs и InP с электронной проводимостью (пoэтoмy тaкиe пpибopы нaзывaют диoдaми Гaннa). В oтeчecтвeннoй литepaтype иx нaзывaют тaкжe прибopaми c oбъeмнoй нeycmoйчивocmью или c мeждoлинным пepeнocoм элeкmpoнoв, пocкoлькy aктивныe cвoйcтвa диoдoв oбycлoвлeны пepexoдoм элeктpoнoв из «цeнтpaльнoй» энepгетичecкoй дoлины в «бoкoвyю», гдe oни xapaктepизyютcя бoльшoй эффeктивнoй мaccoй и мaлoй пoдвижнocтью. В инocтpaннoй литepaтype пocлeднeмy нaзвaнию cooтвeтcтвyeт тepмин TED (Traпsferred Electroп Device).

Объемное отрицательное сопротивление Общим условием усиления или генерации колебаний является наличие отрицательного дифференциального сопротивления, или дифференциальной проводимости. Найдем условие, при котором возможно существование отрицательной дифференциальной проводимости в однородных полупроводниках.

Пролетный режим генератора. Обычно так называют режим работы, в котором колебательная система, связанная с прибором Ганна, имеет низкую добротность. В этом случае переменное напряжение на колебательной системе мало по сравнению с постоянным напряжением и не оказывает обратного влияния на процессы в образце из GaAs. Если постоянное напряжение превышает пороговое значение, то в образце возникнут импульсы тока, частота следования которых определяется временем пролета. Этот режим уже рассмотрен как эффект Ганна.

Режим с подавлением домена

Транзистором называют электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, имеющий три и более выводов. Термин "транзистор" происходит от английских слов transfer of resistor (преобразователь сопротивления). В отличие от вакуумных СВЧ приборов, не имеющих, с точки зрения механизма работы, аналогов в низкочастотном диапазоне, в основе работы полупроводниковых СВЧ-транзисторов лежат те же физические процессы, которые определяют работу транзисторов на низких частотах. Рассмотрим факторы, которые, с одной стороны, ограничивают возможность использования низкочастотных транзисторов в СВЧ-диапазоне и которые приводят, с другой стороны, к конструктивным особенностям СВЧ-транзисторов, являясь основанием для выделения их в самостоятельную группу транзисторных приборов.

Коэффициент усиления и максимальная частота генерации. Для характеристики усилительных свойств СВЧ БТ вводится коэффициент однонаправленного усиления Кр. Он характеризует прямое усиление транзистора по мощности при условиях его согласования с источником сигнала и нагрузкой и компенсации обратной связи внешней цепью без потерь. Этот коэффициент является общей характеристикой БТ. Он не зависит от схемы включения транзистора. Пользуясь эквивалентной схемой БТ при включении с общей базой, можно получить при условии (ω/ωгp)2 <<1 следующее выражение для коэффициента усиления по мощности Кр.

Особенности создания инверсной населенности уровней В полупроводниковых лазерах используется инверсия населенностей, получаемая в полупроводниках с одним или с различными типами проводимости (p-n-переход). Идеальным было бы состояние (рис. 10.9), когда верхние уровни в области 2 полностью заполнены электронами проводимости а нижние в области 1 полностью свободны от валентных электронов, т. е. полностью заполнены дырками. В этом случае инверсия населенности была бы наибольшей.

Высокочастотные полевые транзисторы. Характеристики и параметры Полевым транзистором называется полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, управляемый электрическим полем. Полевые транзисторы были запатентованы в Англии в 1939 г., задолго до появления БT. Kонструктивно-технологические отличия ПT, вытекающие из их принципа действия, позволяют повысить частотную границу СВЧ-транзисторных устройств по сравнению с устройствами на основе БT.

Болометры

Болометр, или терморезистор, - это резистор, сопротивление которого на постоянном токе зависит от температуры. Различают болометры с положительным температурным коэффициентом сопротивления (ТКС) - это бареттеры, и с отрицательным ТКС - это термисторы. Общее имя для тех и других - СВЧ терморезистор. Обычно болометры имеют форму цилиндра или шара с характерными размерами доли миллиметров, хотя бывают платиновые бареттеры с толщиной 1 - 2 мкм. Получили распространение также бареттеры, изготовленные по пленочной технологии на специальных подложках. Размеры термисторов больше, чем у бареттеров по толщине (несколько десятых миллиметра). Длина тех и других - порядка одного миллиметра. Основные параметры болометров: ТКС [град-1] , чувствительность [Ом/мВт], максимально допустимая мощность, тепловая постоянная времени, коэффициент теплоотдачи [Вт/град]. Понятно, что чувствительность тем больше, чем меньше коэффициент теплоотдачи и чем больше ТКС. Терморезисторы применяют для измерения малых уровней мощности. Принцип действия состоит в том, что терморезистор подогревается первоначально постоянным током до такой температуры, когда его сопротивление на СВЧ становится сравнимым с волновым сопротивлением волновода, так что он согласован с трактом и, следовательно, поглощает практически всю падающую мощность. Под воздействием мощности СВЧ происходит дополнительный нагрев тела терморезистора и, как следствие, изменяется его сопротивление. Для преобразования изменения сопротивления в более удобный сигнал - напряжение, терморезистор включают в мостовую схему. Сигнал, появляющийся в диагонали моста обрабатывается блоком измерительным.

3.6.2. Термопары

Высокочастотные термопары состоят из двух тонких пленок «металл - металл», например, хромель - копель, или «металл - полупроводник», например, висмут - теллурид свинца, нанесенных методом вакуумного напыления на диэлектрическую подложку, с контактом между ними. В качестве подложки чаще всего используют цилиндрическое стекловолокно диаметром около 20 мкм. Сопротивление термопары постоянному току должно быть приблизительно равным волновому сопротивлению для согласования с трактом. Мощность СВЧ, поглощаемая термопарой, нагревает ее. Область, в которой расположен один из спаев, нагревается больше, так что возникает разность температур между двумя спаями и появляется термо-ЭДС eт. В дальнейшем термо-ЭДС усиливается и преобразуется блоком измерительным. Термопара характеризуется чувствительностью [В/Вт]. Способы размещения и согласования термопар в преобразователях подобны размещению и согласованию терморезисторов.

3.6.3. Другие типы чувствительных элементов преобразователей малого уровня мощности

В качестве чувствительных элементов применяют также высокочастотные диоды, полупроводниковые резистивные преобразователи на основе разогрева носителей тока в полупроводнике, ферромагнитные пленки, полупроводниковые датчики на эффекте Холла. Все эти элементы можно отнести к электронным преобразователям. Для них характерны малые постоянные времени, то есть высокое быстродействие, что обеспечивает возможность выделения огибающей модулированных сигналов.

3.6.4. Поглотители и чувствительные элементы тепловых преобразователей среднего и большого уровней мощности

Для измерения мощностей больше 10 -2 Вт поглотители с малыми размерами не пригодны, ибо имеют малую поверхность, малый коэффициент теплоотдачи и нагреваются до температур 80-100 градусов уже мощностью 10-20 мВт. Поэтому для ваттметров среднего и большого уровней применяют калориметрические преобразователи, в которых поглощение мощности осуществляется согласованной распределенной нагрузкой с достаточно большим коэффициентом теплоотдачи. А в качестве чувствительного элемента применяют термометр сопротивления.

Метод (принцип) замещения

3.7.1. Важную роль в повышении точности тепловых ваттметров СВЧ имеет метод замещения. В основу метода положено предположение о том, что тепловой преобразователь одинаково преобразует в тепло как энергию СВЧ излучения, так и энергию постоянного тока. «Одинаковость» преобразования проявляется в том, что чувствительность или коэффициент преобразования преобразователя должны быть равны относительно мощности СВЧ и мощности постоянного тока. Если такое предположение верно, то пригоден следующий метод измерения. Сначала в преобразователе рассеивают измеряемую мощность СВЧ PСВЧ и измеряют выходной сигнал преобразователя, например, ?R или ?eт. Затем снимают сигнал СВЧ и в преобразователе рассеивают в том же поглотителе, например, в термопаре или терморезисторе, такую мощность постоянного тока или тока низкой частоты Pзам, которая производит тот же выходной сигнал преобразователя. Измеряя эту мощность Pзам , которая называется мощностью замещения, определяют неизвестную мощность PСВЧ. Поскольку измерение мощности постоянного или НЧ тока - это сравнительно простые и точные измерения, то благодаря методу замещения могут быть уменьшены погрешности измерений СВЧ мощности. Особенно большой выигрыш в точности достигается, если сама операция замещения, то есть замены мощности СВЧ мощностью постоянного тока, и операция измерения значения Pзам производятся автоматически, как это реализуется в наиболее совершенных современных приборах.

Термический КПД Физика лабораторные работы http://ruatom.ru/
Сопромат, механика, информатика. Теория, практика, задачи Математика, физика