как выбрать программы для расчета строительных конструкций
Расчёт стержневых конструкций Рациональное очертание оси арки Определение перемещений в упругих системах Правило П. Верещагина Основная система метода сил Определение моментных фокусных отношений

Курс лекций по строительной механике

Термин «теория сооружений» не рекомендуется, так как стро­ительная механика не дает полной теории сооружений, а ограни­чивается решением определенного круга проблем. В строительной механике, как известно, реальные сооружения при расчете заменяются их расчетными схемами как механически­ми системами; поэтому в данном сборнике термины «сооружение», •«расчетная схема» и «система» трактуются как тождественные. В соответствии с общими требованиями, предъявляемыми к терминологии, определения, поясняющие содержание термина, должны отвечать современному уровню науки и удовлетворять требованиям ясности, точности, общности и сжатости, сохраняя при этом взаимную связь.

Расчёт стержневых конструкций на действие подвижной нагрузки

К подвижной нагрузке, оказывающей внешнее силовое воздействие на сооружения, относят автомобильный и железнодорожный транспорт, мостовые краны и т.д.

Особенностью расчёта сооружений на подвижную нагрузку является то, что для оценки напряжённо-деформированного состояния во всех поперечных сечениях по длине сооружения необходимо фиксировать бесконечно большое число раз подвижную нагрузку, превращая её в статическую. Такой расчёт, естественно, нерационален. Поэтому при расчёте сооружений на подвижную нагрузку не строят эпюры внутренних усилий, описывающих их изменение по длине сооружения.

Для решения этой задачи в строительной механике разработан аппарат линий влияния. Линией влияния называется график изменения какого-либо параметра (момент, сила, напряжение, перемещение и т.д.) в зависимости от положения безразмерной силы Таким образом, линия влияния (л.в.) описывает изменение изучаемого параметра в каком-то конкретном сечении. Физический смысл ординаты л.в. заключается в том, что такая ордината описывает величину того параметра л. в., для которого она построена (рис. 2.4).

Линии влияния опорных реакций

Известно, что любой расчёт конструкции начинают с определения опорных реакций. Не является исключением и расчёт, связанный с построением линий влияния.

Рассмотрим построение линий влияния опорных реакций для двухопорной балки. Поместим на неё силу , движение которой по балке будем описывать изменением координаты х (см. рис. 2.4). При фиксированном положении силы составим уравнение моментов относительно шарнира В, как и при обычном расчёте:

RA  - F( - х) = 0  RA = F. (2.1)

Из анализа выражения (2.1) очевидно, что оно описывает прямую линию. Тогда из (2.1) при х = 0 и с учётом найдём, что RA = 1, а при х= RA = 0. Составляя аналогичное уравнение моментов относительно шарнира А, можно построить линию влияния опорной реакции RB. В строительной механике принято положительные ординаты линии влияния откладывать вверх от базовой линии.

 Эти же линии влияния можно построить, вообще не осуществляя аналитических выводов. Ясно, что в тот момент  времени, когда подвижная сила окажется над опорой А, будет восприниматься только опорой А, опорная реакция которой будет равна 1, тогда как опорная реакция на опоре В в этот же момент времени будет равна 0. При этом известно, что если между двумя шарнирами нет нагрузки, то любое внутреннее усилие на таком участке стержня будет изменяться по закону прямой линии.

Если рассматривать балку с двумя консолями (рис. 2.5), то уравнения для реакции будут такими же, что и для балки без консолей.

Учитывая, что зависимость между опорными реакциями RA и  RB и координатой х является функцией первой степени (см. выражение (2.1), то, продолжая прямые линии на консоли, получают линии влияния опорных реакций RA и  RB. Форма линий влияния RA и RB и значения их ординат показаны на рис. 2.5.

 


 


Построим линии влияния опорных реакций защемлённой балки, изображённой на рис. 2.6. В защемлении возникают две опорные реакции: МА и RA. Из условия равновесия А = 0 получаем МА +

+Fх =0  МА = -х. Тогда при х = 0 МА = -. Из уравнения проекций   F + RA  0  RA = 1.

 На рис. 2.6 показаны формы и значения ординат линий влияния опорных реакций МА и RA для консольной балки.

Настоящий курс лекций по строительной механике написан в соответствии со стандартом для специальности «Автомобильные дороги и аэродромы». Авторами он многократно прочитан студентам факультета «Автомобильные дороги и мосты» Сибирской государственной автомобильно-дорожной академии (СибАДИ), обучающимся по специальности «Автомобильные дороги и аэродромы». В предлагаемом курсе лекций излагаются основы классической строительной механики, без глубокого осмысления которых невозможно освоение современных методов расчёта сооружений, использующих многочисленные программные продукты.

Опоры Для того чтобы в процессе создания и последующей эксплуатации сооружение оставалось геометрически неизменяемым и неподвижным по отношению к основанию (как говорят в строительной механике, к земле), сооружение с землёй соединяют специальными устройствами, называемыми опорами, каждая из которых лишает сооружение определённого числа степеней свободы. Всякое устройство, отнимающее у жёсткого диска одну степень свободы, называется простой кинематической связью.

Геометрический анализ изменяемости стержневых систем Число степеней свободы n сооружения в целом может быть определено по формуле П.Л. Чебышева

Расчет многопролетных статически определимых балок

Вместе с тем данное определение не является точным, так как оно связано с понятием сооружение, которое не имеет точного определения. Очевидно, что здания с их фундаментами, стропиль­ные и мостовые фермы, опоры линий электропередач, телевизион­ные и радиомачты, антенные устройства, резервуары для жидко­стей, обделки тоннелей, арочные плотины и т. д. являются соору­жениями. Менее ясно, можно ли относить к сооружениям корпуса самолетов, ракет, судов, подводных лодок, каркасы железнодо­рожных вагонов, кузова автобусов и т. д. Однако в литературе последних десятилетий фигурируют такие термины, как строитель­ная механика самолета, строительная механика корабля и даже строительная механика машин. Рекомендуемое в данном сборнике определение оставляет вопрос о такой экстраполяции открытым.
Метод перемещений в строительной механике