Теоремы и методы расчета сложных резистивных цепей Метод контурных токов Векторные диаграммы Резонанс в сложных схемах Топологические методы расчета электрических цепей Расчет сложных трехфазных цепей

Методы расчета электрических цепей

Метод наложения токов В методе наложения токов считается, что каждый из источников ЭДС создает в любой ветви цепи свой ток, независимо от того, если другие источники или их нет. При использовании данного метода из схемы поочередно исключаются все источники за исключением одного. Исключаемые источники заменяются проводником, если источник идеальный, или соответствующим ему внутренним сопротивлением, если источник реальный.

Метод узловых потенциалов

Теоретическая база метода узловых потенциалов – 1-ый закон Кирхгофа в сочетании с потенциальными уравнениями ветвей. В этом методе потенциал одного из узлов схемы принимают равным нулю, а потенциалы остальных (n-1) узлов считают неизвестными, подлежащими определению. Общее число неизвестных составляет (n-1).

Рассмотрим обобщенную ветвь некоторой сложной схемы (рис. 18).

Свяжем потенциалы концов ветви (узлов) между собой через падения напряжений на отдельных участках:

  или 

Уравнение, связывающее потенциалы конечных точек ветви через падения напряжений на ее отдельных участках, называется потенциальным уравнением ветви. Из потенциального уравнения ветви могут быть определены ток ветви и напряжение на резисторе:

.

Пусть требуется выполнить расчет режима в заданной сложной схеме рис. 19. Параметры отдельных элементов схемы заданы.

Принимаем потенциал узла 0 равным нулю (j0 = 0), а потенциалы узлов 1 и 2 (j1 и j2) будем считать неизвестными, подлежащими определению.

Зададимся положительными направлениями токов в ветвях схемы I1, I2, I3, I4, I5. Составим потенциальные уравнения ветвей и выразим из них токи ветвей:

I1 = (j1 – j0 + E1 )/ R1

I2 = (j2 – j0 + E2 )/ R2

I3 = (j1 – j0 + E3 )/ R3

I4 = (j0 – j1 )/ R4

I5 = (j0 - j2  )/ R5


 

Составим (n-1)  уравнение по 1-му закону Кирхгофа для узлов 1 и 2:

-I1 – I3 + I4 – J1 – J2 = 0

-I2 + I3 + I5 + J2 =0

Подставим в уравнения 1-го закона Кирхгофа значения токов, выраженные ранее из потенциальных уравнений. После приведения коэффициентов получим систему узловых уравнений:

В обобщенной форме система узловых уравнений имеет вид:

Здесь введены следующие обозначения:

 G11 =1/R1 +1/R3 +1/R4; G22 =1/R2 +1/R3 +1/R5 и т.д. – собственные проводимости узлов, равные суммам проводимостей всех ветвей, сходящихся в данном узле, всегда положительны;

  G12 = G21 = 1/R3; Gnm = Gmn– взаимные проводимости между смежными узлами (1 и 2, m и n), равные сумме проводимостей ветвей, соединяющих эти узлы, всегда отрицательны;

J11 = - E1 /R3 – E3 /R3 – J1; J11 =- E2 /R2 – E3 /R3 + J1 и т. д. – узловые токи узлов, равные алгебраической сумме слагаемых E/R и J от всех ветвей, сходящихся в узле (знак ”+”, если источник действует к узлу, и знак “-” , если источник действует от узла).

Система узловых уравнений в матричной форме:

  или сокращенно ,

где   - матрица узловых проводимостей,  - матрица узловых потенциалов,  - матрица узловых токов.

Последовательность (алгоритм) расчета.

1) Принимают потенциал одного из узлов схемы равным нулю, а потенциалы остальных (n-1) узла считают неизвестными, подлежащими определению.

2) Руководствуясь обобщенной формой, составляют (n-1) уравнение для узлов с неизвестными потенциалами.

3) Определяются коэффициенты узловых уравнений и составляются их матрицы.

4) Система узловых уравнений решается на ЭВМ по стандартной программе для решения систем линейных алгебраических уравнений с вещественными коэффициентами, в результате чего определяются неизвестные потенциалы узлов j1, j2, …

5) Выбираются положительные направления токов в ветвях исходной схемы I1, I2 , I3, I4, I5. Токи ветвей определяются из потенциальных уравнений ветвей через потенциалы узлов j1, j2, ….

6) При необходимости определяются напряжения на отдельных элементах (Uk = IkRk), мощности источников энергии (PEk = EkIk, PJk = Uk Jk) и приемников энергии (Pk = Ik2 ×Rk).

Совокупность устройств для получения, передачи, распределения и потребления электрической энергии называется электрической цепью. Основными элементами электрической цепи являются источники и приемники электрической энергии. Электрическая цепь является линейной, если ее элементы имеют параметры (Ei и Ri), независящие от тока и напряжения. Если хотя бы один элемент имеет параметры, зависящие от тока или напряжения, то цепь является нелинейной. К нелинейным элементам относятся лампы накаливания, диоды, стабилитроны, термо- и тензорезисторы и т.д. Элементы электрических цепей принято характеризовать с помощью вольтамперных характеристик, представляющих зависимость тока, протекающего через элемент, от величины приложенного к нему напряжения - I=f(U).
Теоретическая база метода контурных токов