Теоремы и методы расчета сложных резистивных цепей Метод контурных токов Векторные диаграммы Резонанс в сложных схемах Топологические методы расчета электрических цепей Расчет сложных трехфазных цепей

Методы расчета электрических цепей

В случае расчёта линейных электрических цепей с сосредото­ченными параметрами применение указанных выше методов фактически сводится к составлению и расчёту системы линейных уравнений, порядок которой определяется сложностью рассматриваемой цепи. Как известно, наиболее общим методом расчёта системы ли­нейных уравнений является метод по формулам Крамера, определяю­щих искомые величины через главный определитель системы, состав­ленный из коэффициентов при неизвестных величинах, и вспомогательные определители, получающиеся из главного определителя путём замены столбца коэффициентов при неизвестном столбцом свободных членов. При практических расчётах вычисление этих определителей связано с достаточно громоздкими арифметическими вычислениями и требует достаточно большой затраты времени.

Резонанс токов

Резонанс в цепи с параллельным соединением источника энергии и реактивных элементов L и C получил название резонанса токов. Простейшая схема такой цепи показана на рис. 64.

 

Комплексная входная проводимость схемы:

Условие резонанса токов:  или , откуда  - резонансная  (собственная) частота.

Из полученного равенства следует, что резонансного режима в цепи можно достичь изменением параметров элементов L и C или частоты источника w.

В резонансном режиме полная проводимость схемы равна активной проводимости и имеет минимальное значение:  = G, а ток источника также минимален и совпадает по фазе с напряжением источника (j = 0): I =UY = UG.

Токи в ветвях с реактивными элементами IL=U(-jBL), IC =U(jBC) равны по модулю, противоположны по фазе и компенсируют друг друга, а ток в резисторе G равен току источника (I=IG=UG). Равные по модулю токи в реактивных элементах IL = IC могут значительно превосходить ток источника I при условии, что BL=BC>>G .

Векторная диаграмма токов и напряжений показана на рис. 65.

Электрическая цепь с параллельным соединением элементов G, L и C в технике получила название параллельного колебательного контура. Свойства такой цепи как колебательного контура характеризуют следующие параметры:  - резонансная частота;  - волновая проводимость;  - добротность контура.

 

 

 

 

 

 

Резонансные характеристики параллельного контура представлены на рис. 66.

Рис. 66 
 

Резонанс токов находит широкое применение в области радиотехники и техники связи. В электроэнергетике компенсация реактивной мощности на промышленных предприятиях с помощью параллельного подключения конденсаторных батарей, по сути дела, представляет собой мероприятие, при котором также достигается резонанс токов.

 

 

 

 

Под сложной линейной электрической цепью постоянного тока понимают любую разветвлённую электрическую цепь, в состав которой в общем случае входят неизменные во времени источники напряжения (э.д.с.) и источники тока (т.д.с.), а также линейные резисторы, сопротивления которых не зависят ни от значений, ни от направлений токов и напряжений в цепи. Для расчёта сложных цепей, как правило, применяют законы Кирхгофа, а также различные методы, основанные на этих законах. Первый закон Кирхгофа: В любом узле сложной электрической цепи алгебраическая сумма токов в ветвях, соединяющихся в этом узле, равна нулю:
Теоретическая база метода контурных токов