Вычисление производной и интеграла Вычислить криволинейный интеграл Вычисление длины дуги кривой Тройной интеграл Объём цилиндрического тела Поверхностный интеграл первого рода Вычисление функций Функции комплексной переменной

Математика вычисление производной и интеграла

МЕТОДЫ ИНТЕГРИРОВАНИЯ. ИНТЕГРИРОВАНИЕ ПО ЧАСТЯМ Точное нахождение первообразной (или интеграла) произвольных функций - дело значительно более сложное, чем дифференцирование, то есть нахождение производной. Зачастую выразить интеграл в элементарных функциях невозможно. Есть такие методы интегрирования 1 Непосредственное интегрирование 2 Подведение под знак дифференциала 3 Метод замены переменной (метод подстановки) 5 Интегрирование по частям 6 Интегрирование рациональных дробей

Тройной интеграл в цилиндрических координатах

Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга. Если этой координатной плоскостью является плоскость хОу, то цилиндрические координаты r, φ, z связаны с прямоугольными координатами х, у, z соотношениями

где

Формула замены переменных в тройном интеграле имеет вид:

ТРОЙНОЙ ИНТЕГРАЛ В СФЕРИЧЕСКИХ КООРДИНАТАХ

Если область V ограничена сферой или частью сферы, тройной интеграл вычислить проще переходом к сферическим координатам. Точка М в сферических координатах однозначно определяются величинами ρ, φ, θ. Здесь ρ- расстояние ОМ до точки из начала координат; φ- угол между проекцией ОМ на плоскость хОу и

осью Ох; θ - угол между положительным направлением оси Oz и лучом ОМ. Связь между прямоугольными декартовыми координатами х, у, z точки М и её

сферическими координатами ρ, φ, θ определяется соотношениями

где

Дифференциал объёма в сферических координатах выражается как

Формула замены переменных в тройном интеграле имеет вид:

1. Какой угол образует с осью  касательная прямая к кривой ,  в точке ?

2. Записать уравнение касательной плоскости к поверхности  в точке .

3. Найти ,  для .

4. Для функции  убедиться в равенстве ее смешанных производных второго порядка  и  в области их
существования.

5. Для функции  найти  и . Убедиться, что значения этих производных не зависят от порядка дифференцирования.

Ответы. 1. ; кривая – пересечение верхней части двуполостного гиперболоида и плоскости .

2. .

3. .

4. ; достаточное
условие равенства смешанных производных ФНП – их непрерывность по совокупности переменных – выполнено.

5. ; замечаем, что последовательное вычисление производной  несколько проще.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ При рассмотрении определённых интегралов мы предполагали, что область интегрирования ограничена (более конкретно, является отрезком [a,b] ); для существования определённого интеграла необходима ограниченность подынтегральной функции на [a,b]. Будем называть определённые интегралы, для которых выполняются оба эти условия (ограниченность и области интегрирования, и подынтегральной функции) собственными; интегралы, для которых нарушаются эти требования (т.е. неограничена либо подынтегральная функция, либо область интегрирования, либо и то, и другое вместе) несобственными.
Найти объем тела, ограниченного указанными поверхностями