Математика решение задач на вычисление пределов

Курс лекций по строительной механике
Задачи по строительной механике
Лабораторные работы по электронике
Лекции по сопромату, теория,
практика, задачи
Моменты инерции сложных фигур
Деформации и перемещения при
кручении валов
Определение опорных реакций
Понятие об устойчивости
Внутренние силы. Метод сечения
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
Слоновая кость
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
Фламандский метод живописи масляными
красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой гармонии
Техника живописи различных мастеров
Джорджоне и Тициан
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Актиниды
Актиний
Применение тория
Химически уран
Изотоп уран-233
Нептуний
Плутоний
Лекции и задачи по физике
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности изготовления
диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Автокад
Настройка рабочей среды
Методы редактирования
Слои в Автокаде
 

Предел последовательности Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…)

Вычислить  .

Предел функции  Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

Вычислить предел с помощью формулы Тейлора: .

Предел, непрерывность ФНП ПРИМЕР. Доказать по определению . Решение. Берем . Ищем  

Предел и непрерывность функции обной переменной Понятие предела функции  при , стремящемся к  (сокр. ), является основным понятием математического анализа. Оно характеризует поведение функции  вблизи точки , т.е. существование предела и его значение определяют локальное свойство .

ПРИМЕР Показать по определению . Теоремы о пределах о свойствах функций, имеющих конечные пределы

Существование предела частного функций  доказывается аналогично, если предварительно установить ограниченность функции  на некоторой окрестности .

Односторонние пределы

Второй замечательный предел

Различные определения непрерывности функции в точке Эквивалентность определений либо следует из эквивалентности определений конечного предела функции, либо может быть установлена.

Провести полное исследование поведения функции и построить её график

Элементы теории множеств Понятие "множество" – неопределяемое понятие. Под множеством понимается "набор", "коллекция", "совокупность" и т.п. отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Предметы или объекты, составляющие множество, называются элементами множества. Обычно множества обозначают большими буквами , а их элементы – малыми буквами  преимущественно латинского алфавита.

ПРИМЕР. Доказать, что . РЕШЕНИЕ. Два множества совпадают, если каждое из них является подмножеством другого.

ПРИМЕР. Покажем, что множество  – счетное. Рассмотрим множество положительных рациональных чисел . Элементы множества  можно расположить в виде бесконечной прямоугольной таблицы

Математическая логика Для записи определений, теорем, математических рассуждений в курсе высшей математики целесообразно применять символику, используемую в математической логике.

ПРИМЕР. Задано высказывание , , здесь   – действительные числа. Прочитать высказывание, выяснить его смысл, установить – истинно оно или ложно, построить отрицание высказывания.

Грани числовых множеств Напомним свойства множества всех действительных чисел .

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика