Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика

Курс лекций по строительной механике
Лабораторные работы по электронике
Курс лекций техники живописи
Техника живописи
Киноварь
Искусственный  ультрамарин
http://nvkurs.ru/
Слоновая кость
Раннее барокко
Акварель
Живопись гуашью
Живопись старинной темперой
Живопись современной темперой
Пастель
Масляная живопись
Трещины в слоях масляной живописи
Эмульсионные краски Мароже и Мурие
Рецепт клеевого грунта для холста
Подготовка стен для живописи
http://kursgm.ru/
Фламандский метод живописи масляными
красками
Техника живописи Леонардо да Винчи
Стенная декоративная живопись
Темпера на цельном яйце
Итальянская фреска
Живопись по твердой штукатурке
Кузмин теоретик эмоционализма
Зарождение Абстрактного искусства
Психологическая теория цветовой гармонии
Техника живописи различных мастеров
Джорджоне и Тициан
Выбрасы АЭС
Химические свойства
радиоактивных элементов
Актиниды
Актиний
Применение тория
Химически уран
Изотоп уран-233
Нептуний
Плутоний
Лекции и задачи по физике
Работа электрических машин и аппаратов
Машины постоянного тока.
Асинхронный двигатель
Трансформатор
Осветительные лампы
Закон полного тока
Элементы зонной теории твердого тела
Физическая природа проводимости
Проводниковые материалы
Сплавы высокого сопротивления
Припои
Полупроводниковые материалы
Примесная электропроводность
полупроводников
.
Электропроводность собственных 
полупроводников
Микроволновый диапазон
Классификация приборов
микроволнового диапазона
Технологические особенности изготовления
диодов СВЧ диапазона
Туннельный диод
Диод Шоттки
Высокочастотные полевые транзисторы
Физические основы работы квантовых
приборов оптического диапазона
Квантовые переходы
Возможность усиления электромагнитного поля
Распространение электромагнитных волн
Энергия электромагнитного поля
Плоские электромагнитные волны
Распространение волн в реальных диэлектриках
Элементарный электрический излучатель
Волны в коаксиальной линии
Колебательные системы СВЧ.
Машиностроительное черчение
Сварные соединения
При соединении пайкой
Изображение цилиндрической зубчатой
передачи
Параметры зубчатых колес
Червячная передача
Рабочий чертеж червячного колеса
Чертеж общего вида и сборочный чертеж
Особенности нанесения размеров
Изображения и штриховка сечений
Детали сборочных единиц
Сборочные чертежи неразьеных соединений
Шероховатость механической обработки
Сборочный чертеж сварного соединения
Сборочный чертеж армированного изделия
Электрические схемы
Система автоматизированного
проектирования (САПР)
Автокад
Настройка рабочей среды
Методы редактирования
Слои в Автокаде
Классификация информационно-вычислительных
систем
Системы телеобработки данных
Территориальные сети ЭВМ
Архитектура вычислительных сетей
Иерархия протоколов вычислительной сети
Коммутация сообщений
Физическая структура терминального комплекса
Сервис открытых сетей
Сеансовый уровень
Сетевой уровень
Пользовательские процессы и
уровни управления в ИВС
Прикладной уровень
Стек TCP/IP
Представительный уровень
Сеансовый уровень управления передачей
Обзор сетевых операционных систем
Структура транспортной сети
Стандарты транспортного уровня
Архитектура сетевого уровня

Линейная и векторная алгебра Аналитическая геометрия Математический анализ

  • Элементы линейной алгебры Матрицы и определители. Основные понятия
  • Система линейных уравнений (СЛУ)
  • Аналитическая геометрия Прямая на плоскости Уравнением линии на плоскости (относительно выбранной системы координат) называется такое уравнение  (неявный вид), которому удовлетворяют координаты  любой точки данной линии, и не удовлетворяют координаты ни одной точки, не лежащей на этой линии.
  • Построение гиперболы При построении гиперболы необходимо построить прямоугольник со сторонами  и   и провести диагонали, которые и являются асимптотами (см. рис.). ,  - вершины гиперболы,  - действительная полуось,  - мнимая полуось,  - центр гиперболы.
  • Некоторые задачи на прямую и плоскость в пространстве Найти угол между прямой и плоскостью.
  • Математический анализ Элементы теории множеств Логические символы
  • Интегрирование тригонометрических функций
  • Дифференциальное исчисление функции одной переменной Производная функции
  • Производная функции, заданной неявно Если дифференцируемая функция задана уравнением , то производная этой неявной функции может быть найдена из уравнения , где рассматривается как сложная функция от переменной x.
  • Функции двух переменных В естествознании встречаются ситуации, когда одна величина является функцией нескольких других:
  • Частные производные и дифференциалы высших порядков Частные производные по переменным  и в точке  от функций  и в точке М, если они существуют, называются частными производными второго порядка от функции .
  • Решение интегралов Выполнение контрольного, курсового, типового расчета
  • Задача Коши для обыкновенного линейного дифференциального уравнения с постоянными коэффициентами
  • Интеграл Фурье Пусть функция (сигнал)  описывает некоторый периодический процесс. С целью исследования этого процесса часто представляют функцию  в виде суммы постоянного члена и гармонических составляющих с частотами
  • Интегрирование функций нескольких переменных. Двойной интеграл и его свойства. Метод интегральной  суммы. Всякая физическая система имеет пространственные размеры и описывается набором величин, которые могут меняться при переходе от точки к точке системы. Например, тело имеет переменную плотность. Задача – вычислить общую массу тела. Решение такого типа задач и дает метод интегральной суммы.
  • Элементарная математика Контрольная по математике
  • Замена переменных в двойных интегралах связана с переходом от прямоугольной к криволинейной системам координат.
  • Практикум по теме «Тройной интеграл» Задача о вычислении массы тела. Имеем объем V заполненный массой с переменной плотностью f(x,y,z). Вычислим общую массу по всему объему методом интегральной суммы.
  • Математика решение задач на вычисление матрицы
  • Решение контрольной работы по математике. Вычисление интегралов, матриц, функций
  • Сложение матриц Операция сложения определена лишь для матриц одинакового размера
  • Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу.
  • Решение задач на вычисление пределов
  • Предел последовательности Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…)
  • Различные определения непрерывности функции в точке Эквивалентность определений либо следует из эквивалентности определений конечного предела функции, либо может быть установлена.
  • Вычисление производной и интеграла
  • Производная функции Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x).
  • Интегрирование тригонометрических выражений С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить.
  • Вычислить интегралы от функции комплексного переменного
  • Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.
  • Вычислить криволинейный интеграл
  • Исследовать поведение функции в окрестности точки с помощью формулы Тейлора
  • Вычисление длины дуги кривой. Пример. Вычислить длину дуги кривой: , между точками пересечения с осями координат. Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .
  • Тройной интеграл в цилиндрических и сферических координатах
  • Применение тройных интегралов. Масса неоднородного тела
  • Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D.
  • Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.
  • Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).
  • Вычисление функций
  • Функция нескольких переменных и ее частные производные Определение функции нескольких переменных Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).
  • Функции комплексной переменной Определение и свойства функции комплексной переменной Пусть даны две плоскости комплексных чисел и на первой – множество D комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.
  • Оптика и строение атома. Элементы физика атома

  • Руководство к лабораторным работам Экспериментальные данные о спектрах излучения
  • Основные положения квантовой механики Противоречия классической физики: особенности строения атома, линейчатые спектры атомов, дифракция электронов, дифракция нейтронов.
  • Физика атома. Электрон в атоме водорода. Энергетические уровни. Квантовые числа и их физический смысл. Квантово-механическая теория атома, построенная на уравнении Шредингера, гораздо совершеннее полу‑классичекой теории атома Бора, построенной на ряде постулатов.
  • Цепная ядерная реакция деления. Ядра обычно находятся в состоянии с наименьшей энергией, это состояние называется основным. При попадании частиц с большой кинетической энергией в ядро, оно переходит в возбужденное неустойчивое состояние и через некоторое время делится на два более устойчивых ядра.
  • Биологическое действие ионизирующих излучений. Основа физического воздействия ядерных излучений на живые организмы – ионизация атомов и молекул в клетках.
  • Курс лекций по строительной механике

    • Расчёт стержневых конструкций на действие подвижной нагрузки К подвижной нагрузке, оказывающей внешнее силовое воздействие на сооружения, относят автомобильный и железнодорожный транспорт, мостовые краны и т.д. Особенностью расчёта сооружений на подвижную нагрузку является то, что для оценки напряжённо-деформированного состояния во всех поперечных сечениях по длине сооружения необходимо фиксировать бесконечно большое число раз подвижную нагрузку, превращая её в статическую. Такой расчёт, естественно, нерационален. Поэтому при расчёте сооружений на подвижную нагрузку не строят эпюры внутренних усилий, описывающих их изменение по длине сооружения.
    • Определение расчётного положения подвижной системы нагрузок Расчётное положение подвижной системы сосредоточенных сил над линией влияния усилия S соответствует max или min искомой величины этого усилия. В общем случае искомое усилие S может иметь несколько экстремальных (max или min) значений.
    • Рациональное очертание оси арки Рациональной осью трёхшарнирной арки заданного пролёта и заданной стрелы подъёма называется такая ось, при которой требуемые условиями прочности поперечные сечения арки будут наименьшими. Очевидно, что наименьшая величина нормального напряжения, согласно выражению (3.11), будет в том случае, когда значение изгибающего момента в сечении будет равно нулю.
    • Определение перемещений в упругих системах Всякое сооружение под действием приложенных к нему внешних нагрузок и воздействий (сосредоточенные и распределённые нагрузки, осадка опор, температура и др.) изменяет свою первоначальную форму, т.е. все точки этого сооружения получают перемещения.
    • Правило П. Верещагина На практике часто встречаются случаи, когда на отдельных участках стержни имеют одинаковые физические и геометрические параметры, а одна из подынтегральных функций изменяется линейно.
    • Основная система метода сил Любой способ раскрытия статической неопределимости предполагает выбор для заданной системы основной системы. В методе сил основную систему выбирают из заданной, устраняя «лишние» связи. За «лишние» могут быть приняты как внешние, так и внутренние связи. Внешние связи являются опорными связями, а внутренними являются связи, препятствующие взаимному перемещению двух смежных сечений при мысленном рассечении стержня или удалении из него шарнира.
    • Определение моментных фокусных отношений Рассмотрим некоторый участок неразрезной балки с загруженным только одним пролётом и с построенной для этого случая эпюрой моментов. Если каким-то образом изменить величину силы F загруженного пролёта, то соответственно изменятся и ординаты этой эпюры. Но форма эпюры никак не изменится, а в незагруженных пролётах останутся неизменными положения нулевых точек, которые называются фокусными точками. Точки, расположенные правее загруженного пролета, называются правыми, а левее - левыми фокусами.
    • Расчет статически неопределимых систем методом перемещений Основы метода Метод перемещений в строительной механике является во многом основополагающим для большинства современных методов (метод конечных элементов и др.) раскрытия статической неопределимости сложных стержневых конструкций.
    • Собственные колебания системы с конечным числом степеней свободы Рассмотрим балку с n сосредоточенными массами, которые совершают собственные колебания в вертикальной плоскости. Вращения, горизонтальные смещения масс и силы сопротивления внешней среды при анализе колебательного процесса не учитываются.
    • Устойчивость стержневых систем Под устойчивостью понимают способность элементов конструкций сохранять первоначальное положение равновесия при действии на них сжимающих нагрузок. Устойчивость является необходимым условием для каждой инженерной конструкции. Когда первоначальная форма равновесия становится неустойчивой, происходит потеря устойчивости конструкции. Потеря устойчивости может привести к разрушению как отдельного элемента, так и конструкции в целом.
    • Определение перемещений и некоторые основные теоремы строительной механики Расчет сооружений на жесткость связан с определением их деформаций, т. е. вычислением перемещений отдельных точек. Кроме того, умение определять перемещения является основой для расчета статически неопределимых систем, поэтому усвоение этой темы имеет большое значение для всей второй части курса.
    • Основные вариационные принципы и методы строительной механики Знакомство с вариационными принципами строительной механики можно ограничить принципами Лагранжа и Кастильяно. Следует рассмотреть приложение принципа Кастильяно к расчету пластинок
    • Расчет простой плоской статически определимой фермы

    Электротехника Методы расчета электрических цепей

    • Теоремы и методы расчета сложных резистивных цепей Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей. Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами. Сложной называется электрическая цепь (схема), содержащая не менее двух узлов, не менее трех ветвей и не менее двух  источников энергии в разных ветвях.
    • Переходные процессы в линейных цепях
    • Метод контурных токов Теоретическая база метода контурных токов – 2-ой закон Кирхгофа в сочетании с принципом наложения. Предполагают, что в каждом элементарном контуре-ячейке схемы протекает «свой» контурный ток Ik, а действительные токи ветвей получаются по принципу наложения контурных токов как их алгебраические суммы. В качестве неизвестных величин, подлежащих определению, в данном методе выступают контурные токи. Общее число неизвестных составляет m-(n-1).
    • Векторные диаграммы переменных токов и напряжений Из курса математики известно, что любую синусоидальную функцию времени, например i(t)=Imsin(wt+a), можно изобразить вращающимся вектором при соблюдении следующих условий :  а) длина вектора в масштабе равна амплитуде функции Im ; б) начальное положение вектора при t = 0 определяется начальной фазой a; в) вектор равномерно вращается с угловой скоростью w, равной угловой частоте функции.
    • Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику) Двухполюсником называется устройство или часть схемы (цепи) с двумя выводами (полюсами). Если внутри двухполюсника содержатся источники энергии, то он называется активным (A), в противном случае – пассивным (П).
    • Расчёт электрической цепи Метод контурных токов
    • Резонанс в сложных схемах Схемы замещения реальных электрических цепей могут существенно отличаться от рассмотренных выше простейших последовательной или параллельной схем. Хотя условие резонансного режима в общем виде [ Im(Zвх)=0 и Im(Yвх)=0 ] для любой схемы сохраняется, однако конкретное содержание этих уравнений будет определяться структурой схемы замещения.
    • Топологические методы расчета электрических цепей Топологические определения схемы С появлением ЭВМ и их широким применением для решения сложных математических задач были разработаны специальные топологические расчёта сложных электрических цепей, графов и матриц.
    • Расчет сложных трехфазных цепей Сложная трехфазная цепь, например, объединенная энергосистема, может содержать большое число трехфазных генераторов, линий электропередачи, приемников трехфазной энергии. Схема такой цепи представляет собой типичный пример сложной цепи переменного тока. Установившейся режим в такой схеме может быть описан системой алгебраических уравнений с комплексными коэффициентами, составленных по одному из методов расчета сложных цепей (метод законов Кирхгофа, метод контурных токов, метод узловых потенциалов). Наиболее рациональным методом расчета таких трехфазных цепей является метод узловых потенциалов, при этом составление уравнений и их решение производится в матричной форме.
    • Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих. В результате различного вида коротких замыканий в сложной энергосистеме возникает несимметричный режим. Расчет токов коротких замыканий в различных точках энергосистемы является важной инженерной задачей. Также расчеты выполняются методом симметричных составляющих.
    • Расчет электрических цепей несинусоидального тока Расчет электрических цепей, содержащих источники энергии [источники ЭДС e(t) и источники тока j(t)] с несинусоидальной формой кривой, выполняется по методу положения. Процедуру расчета можно условно разделить на три этапа.
    • Классический метод расчета переходных процессов Переходные процессы в любой электрической цепи можно описать системой дифференциальных уравнений, составленных для схемы цепи по законам Кирхгофа. В математике известно несколько методов решения систем дифференциальных уравнений: классический, операционный, численный и др. Название метода расчета переходных процессов адекватно названию математического метода решения системы дифференциальных уравнений, которыми описывается переходные процессы.
    • Операторный метод расчета переходных процессов Если система дифференциальных уравнений, которыми описывается переходной процесс в схеме, решается операционным методом, то и сам метод расчета переходного процесса также называется операционным или операторным. Сущность операторного метода состоит в том, что на 1-ом этапе действительные функции времени i(t), u(t), называемые оригиналами, заменяются некоторыми новыми функциями I(p),U(p), называемыми операторными изображениями. Соответствие между оригиналом функции f(t) и ее операторным изображением F(p) устанавливается на основе прямого преобразования интеграла Лапласа
    • Анализ переходных процессов в цепи R, L, C Переходные процессы в цепи R, L, C описываются дифференциальным уравнением 2-го порядка. Установившиеся составляющие токов и напряжений определяются видом источника энергии и определяются известными методами расчета установившихся режимов. Наибольший теоретический интерес представляют свободные составляющие, так как характер свободного процесса оказывается существенно различным в зависимости от того, являются ли корни характеристического уравнения вещественными или комплексными сопряженными.
    • Расчет переходных процессов методом переменных состояния Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.
    • Способы соединения четырехполюсников Сложная цепь или схема может содержать несколько четырехполюсников, соединенных между собой тем или иным образом. При расчете таких схем отдельные группы четырехполюсников можно заменить эквивалентными одиночными четырехполюсниками и, таким образом, упростить схему цепи и, соответственно, решение задачи.
    • Электрические цепи с распределенными параметрами Параметры электрических цепей в той или иной мере всегда распределены вдоль длины отдельных участков. В большинстве практических случаев распределением параметров вдоль длины пренебрегают и представляют электрическую цепь эквивалентной схемой с сосредоточенными схемными элементами R , L и C. Однако существует большой класс электрических цепей, для которых пренебрежение распределением параметров вдоль длины приводит к существенным погрешностям при их расчёте и становится неприемлемым.
    • Линия с распределенными параметрами без искажений Сигналы, передаваемые по линиям связи, являются несинусоидальными функциями времени и состоят из суммы гармоник различных частот. Если в линии созданы неодинаковые условия для различных гармоник, то в конце линии гармонический состав сигнала будет отличаться от гармонического состава этого же сигнала в начале линии, т.е. сигнал будет искажен. Для линий связи очень важным условием является создание такого режима работы, при котором отсутствовало бы искажение сигнала.
    • Синтез электрических цепей Характеристика задач синтеза Синтезом электрической цепи называют определение структуры цепи и параметров составляющих ее элементов R, L и С по известным свойствам (характеристикам), которым должна удовлетворять цепь. Задачи синтеза цепей противоположны по цели и содержанию задачам анализа. В отличие от задач анализа, имеющих, как правило, единственное решение, задачи синтеза могут иметь несколько решений, удовлетворяющих заданным условиям. В этом случае выбирают наиболее рациональное решение (например, по стоимости, по габаритам, по массе, по числу элементов и т. д.) 
    • Графический метод расчета нелинейной цепи с несколькими источниками ЭДС Графический метод расчета можно применять также и для более сложных схем с несколькими источниками ЭДС. Последовательность графических операций при решении одной и той же задачи может быть различной и зависит от выбора алгоритма решения.
    • Нелинейные магнитные цепи постоянного потока Электромагнитное поле, которое лежит в основе всех многообразных явлений и процессов, исследуемых в электротехнике, имеет две равнозначные стороны – электрическую и магнитную. Как известно, в электрической цепи под воздействием источников энергии возникают электрические токи, которые протекают по электрическим проводам. Подобно электрическим цепям существуют также магнитные цепи, состоящие из магнитных проводов или кратко магнитопроводов, в которых под воздействием магнитодвижущих сил (МДС) возникают и замыкаются магнитные потоки Ф. Формальную схожесть или аналогию между электрическими и магнитными цепями в дальнейшем будем именовать принципом двойственности. Следует помнить, что при формальной схожести электрические и магнитные явления физически различны
    • Нелинейные цепи переменного тока. Общая характеристика нелинейных цепей переменного тока и методов их исследования Нелинейные цепи переменного тока могут содержать в своей структуре нелинейные элементы любого рода: нелинейные резисторы u(i), нелинейные катушки ψ(i) и нелинейные конденсаторы q(u). Физические характеристики нелинейных элементов на переменном токе могут существенно отличаться от их аналогичных характеристик на постоянном токе. Существуют нелинейные элементы, у которых время установления режима соизмеримо с периодом переменного тока, т.е. проявляется инерционность. По этому показателю все нелинейные элементы разделяют на инерционные и безинерционные.
    • Пример. Заданы геометрические размеры разветвленной магнитной цепи и основная кривая намагничивания В=f(Н) для материала магнитопровода. Аналитическое решение задачи выполняется в следующей последовательности. 1. Магнитная цепь разбивается на однородные участки и согласно этой разбивке составляется эквивалентная схема. Направления МДС на схеме определяются по правилу правоходового винта. 2. На основе заданных геометрических размеров (l, S) и основной кривой намагничивания В=f(Н) выполняется расчет ВАХ для отдельных участков цепи. Результаты расчета ВАХ сводятся для удобства пользования в общую таблицу
    • Расчет магнитной цепи с постоянным магнитом Постоянные магниты находят применение в автоматике, измерительной технике и других отраслях для получения постоянных магнитных полей. В основе их принципа действия лежит физическое явление остаточного намагничивания. Известно, что любой ферромагнитный материал, будучи намагниченным от внешнего источника, способен сохранять некоторые остатки магнитного поля после снятия внешней намагничивающей силы.
    • Методы расчета нелинейных цепей переменного тока на основе ВАХ для эквивалентных синусоид Замена несинусоидальных функций i(t) и u(t) эквивалентными синусоидальными позволяет применить к расчету нелинейных цепей переменного тока комплексный метод со всеми вытекающими из него преимуществами. В простейших случаях, когда схема цепи состоит только из последовательно или только из параллельно включенных элементов, решение задачи может быть выполнено графически методом сложения ВАХ. Отличительной особенностью данного метода является то обстоятельство, что отдельные ВАХ складываются не арифметически, как это имело место в цепях постоянного тока, а векторно в соответствии с уравнениями Кирхгофа в комплексной (векторной) форме
    • Резонансные явления в нелинейных цепях Резонанс в цепи, содержащей нелинейную катушку с ферромагнитным сердечником и линейный конденсатор, получил название феррорезонанса. Для качественного исследования явления феррорезонанса воспользуемся методом эквивалентных синусоид.
    • Расчет  мгновенных значений параметров режима графическим методом При расчете мгновенных  значений напряжений u(t) и токов i(t) в нелинейной цепи используются физические  характеристики нелинейных элементов, а именно: вольтамперная характеристика u=f(i) или i=f(u) для резистора, веберамперная характеристика i=f(y) или y=f(i) для катушки и кулонвольтная характеристика q=f(u) или u=f(q) для конденсатора.
    • Расчет переходного процесса методом линеаризации дифференциального уравнения Сущность данного метода заключается в том, что в нелинейном дифференциальном уравнении, описывающем переходной процесс, пренебрегают нелинейностью второстепенных членов этого уравнения, при этом функциональные коэффициенты в этих членах заменяются постоянными. После такой замены нелинейное дифференциальное уравнение превращается в линейное и решается известными методами (классическим или операторным).
    • Теория электромагнитного поля Электростатическое поле Электротехника ― это отрасль знаний об электромагнитных явлениях и их практическом применении в технике. Физической основой всех электромагнитных явлений является электромагнитное поле. Электромагнитное поле представляет собой вид материи, характеризующийся воздействием на заряженные частицы. Как вид материи электромагнитное поле обладает массой, энергией, количеством движения, оно может превращаться в вещество и наоборот
    • Электростатическое поле и емкость двухпроводной линии Пусть требуется рассчитать электростатическое поле и емкость двухпроводной линии с заданными геометрическими размерами (радиус проводов R, межосевое расстояние d, радиус R соизмерим с расстоянием d). Провода линии не заземлены, к линии приложено постоянное напряжение U
    • Методы расчета электрических полей постоянного тока Электрическое поле постоянного тока, с одной стороны, и электростатическое поле вне электрических зарядов (rсв=0), с другой стороны, описываются одинаковыми по структуре математическими уравнениями
    • Магнитное поле сложной системы проводов с током В большинстве реальных случаев электрические токи, создающие магнитное поле, протекают по тонким каналам – электрическим проводам. Для создания сильных магнитных полей, используемых в технике, применяются системы проводов, образующие катушки индуктивности.
    • Поверхностный эффект в плоском листе Ранее было показано, что переменное электромагнитное поле быстро затухает по мере проникновения в толщу проводящей среды. Это приводит к неравномерному распределению поля по сечению магнитопровода, и следовательно, к неравномерному распределению магнитного потока по сечению: на оси магнитопровода плотность магнитного потока наименьшая, а у поверхностного - наибольшая.

    Выбрасы атомных станций радиоактивных веществ